BEST Research Themes Include:
Tissue Engineering (including Biomaterials) is defined as the application of engineering principles to building/repairing tissues like blood vessels, heart muscle, nerves, cartilage, and bone. It is one of the largest growing areas of biomedical engineering. Concepts and discoveries from the fields of molecular and cell biology, including stem cell biology, physiology and immunology are also readily incorporated into research activities for tissue engineering.
Biomedical Imaging is a significant research and education area in biomedical engineering emphasizing biomedical imaging instrumentation development, biomedical imaging algorithms improvement, and biomedical biomarkers synthesis.
Biomolecular Engineering is a broader thematic area, but brings together tissue, cellular and molecular engineering, synthetic biology, bio-nanotechnology and biological computation capacity within UCM campus. The major directions are: 1) to implement a general strategy for the development of nano-biosensors based on rheostatic protein conformational changes and develop important/critical applications in biomedicine (e.g. valley fever) and the environment (pollutant detection, etc.), 2) to develop small, simplified-optimized versions of proteins - of particular interest to biomedical or biotechnological/commercial communities - so that they can be efficiently produced, synthesized and employed at the industrial and/or pharmaceutical applications.
Microfabrication technologies originate from the microelectronics industry, the earliest microfabrication processes were used for integrated circuit fabrication. Microfabrication is actually a collection of technologies (microlithography, doping, thin films, etching, bonding, and polishing) which are utilized in making microdevices. We are most interested in using these technologies for small-scale studies like “lab-on-a-chip” and bio-micro-mechanical-systems (BIOEMEMS).
Nanotechnology is an integrated field to address previously untouchable issues in medicine such as building artificial organs and unique biosensing capacities. The ability to control molecular and nanoscale arrangement will allow tuning phonon, photo and electron properties and thus rationally engineering optical, electrical and thermal property accordingly. This research thrust will emphasize the creation of novel platforms that integrate/incorporate unique properties of nanoscale materials for directing cell shape and facilitating cell-materials interactions on the nano-scale.