|
Dec 11, 2024
|
|
|
|
2019-2020 Catalog [ARCHIVED CATALOG]
Electrical Engineering and Computer Science, M.S.
|
|
Return to: Academic Programs
|
Program Description
eecs.ucmerced.edu
Contact: Marcelo Kallmann, Graduate Group Chair, mkallmann@ucmerced.edu
Graduate studies in Electrical Engineering and Computer Science offers individualized, strongly research-oriented courses of study leading to the M.S. and Ph.D. degrees. The EECS graduate area is organized to allow students to pursue cutting edge research in modern fields of electrical engineering and computer science, emphasizing research and preparing students for leadership positions in industrial labs, government or academia.
The EECS graduate area is highly cross-disciplinary with connections to faculty from all three Schools at UC Merced. In particular, strong collaborations with the graduate programs in Environmental Systems and Cognitive and Informaion Sciences are possible.
Research projects with applications across the full spectrum of science and engineering are encouraged. Opportunities for collaborative projects with scientists at the Lawrence Livermore National Laboratory and with the Center for Information Technology Research in the Interest of Society (CITRIS) are available, particularly with respect to the use of specialized computational equipment.
Prospective applicants must hold the equivalent of a B.S. degree as determined by the university.
Master’s Program Requirements
The principal requirements for a M.S. degree are (1) coursework, (2) the comprehensive exam, which may be in the form of a M.S. thesis or a report. To apply for the graduate studies in EECS, applicants must follow the application procedure of the UC Merced Graduate Division.
Master’s Program Learning Outcomes
Graduates of the M.S. in Electrical Engineering and Computer Science:
- Are able to conduct supervised research in electrical engineering and computer science and are able to situate this research in the contexts of current research literatures.* thesis plan only
- Are able to apply their knowledge of computing, mathematics, science, and engineering to the design and implementation of solutions, under appropriate guidance, to technological problems.
- Are able to conduct experiments and computational simulations for the purpose of evaluating and comparing proposed solutions on the basis of empirical evidence.
- Possess the characteristics of lifelong learners; they are able to acquire and use new techniques, skills, and engineering and scientific tools for research and development practice in electrical engineering and computer science.
- Practice a high standard of professional ethics, including integrity in the conducting and writing of research.
- Communicate effectively through oral, visual, and written means, effectively addressing a broad range of technical audiences.
|
Return to: Academic Programs
|
|