Mar 28, 2024  
2017-2018 Catalog 
    
2017-2018 Catalog [ARCHIVED CATALOG]

Bioengineering Major


Bioengineering is the discipline associated with the discovery and formulation of the design principles behind the structures and modes of operation of living matter at various length scales, ranging from biomolecules and cells to full organisms. Bioengineering is thus a highly interdisciplinary field in which the techniques, devices, materials and resources of engineers are used to address problems in biology, biomedical research and healthcare; lessons from biology are used to inspire design and inform progress in engineering. During the past 40 years, this synergy between biology and engineering has led to a wide range of molecular characterization techniques, implantable materials, diagnostic devices, sensors and designed drugs, and it has produced tools that greatly expedited research in biomedicine such as the sequencing of the human genome. Along with these practical innovations has come a rapidly increasing need for personnel with the necessary interdisciplinary skills, and undergraduate bioengineering programs have proliferated alongside the continued growth of bioengineering research.

The undergraduate major in Bioengineering is designed to provide students with both breadth and depth as well as the possibility of a focus on molecular bioengineering, cellular and tissue engineering, or physiological engineering.

It is suitable preparation for individuals seeking a career in research or industry, or pursuing advanced degrees such as Ph.D. or M.D.

Bioengineering Program Learning Outcomes

Upon graduation, our graduates demonstrate:

  1. An ability to apply knowledge of mathematics, science, and engineering
  2. An ability to design and conduct experiments, as well as to analyze and interpret data
  3. An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
  4. An ability to function on multidisciplinary teams
  5. An ability to identify, formulate, and solve engineering problems
  6. An understanding of professional and ethical responsibility
  7. An ability to communicate effectively
  8. The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
  9. A recognition of the need for, and an ability to engage in, life-long learning
  10. A knowledge of contemporary issues
  11. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Programs